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Abstract. Avariationalwave function todescribe the ground-state propertiesofthe attractive 
Hubbard model is presented. The function is complementary to the Gutzwiller wave function 
for positive U. The results are in agreement with the canonical transformation which is 
known to relate the attractive and repulsive Hubbard models for all electronic densities. 

The simplest model of systems with local non-retarded electron pairing is the extended 
Hubbard model with on-site U attractive interaction (for a review see [l]). The model 
can be considered as generally resulting from a system of narrow band electrons strongly 
coupled to a bosonic field (phonons, excitons, acoustic plasmons, etc), upon elimination 
of bosonic degrees of freedom. The parameter U is an effective one and if U,, < 0, the 
induced local attraction outweighs the on-site repulsion. This is the case of on-site 
attraction or the negative U Hubbard model. 

The concept of local electron pairing is interesting from various points of view 
and it can be of importance for superconductivity, CDW formation and amorphous 
semiconductors [ 11. 

The Hamiltonian is given by 

fi=tfo-1u@ 

(1) n .  = c + c ,  fa = - 2 c;cja D = 2 nit nil 10 10 la 
( i d  i 
U 

where t denotes the transfer integral between nearest neighbours. In this case the model 
contains three parameters, t ,  U and n = N / N , ,  where N is the number of electrons and 
N ,  the number of sites. 

The model (1) has been intensively studied in the last few years [l] (for exact ID 
results see [ 2 ] ) .  There exists a canonical transformation (attraction-repulsion trans- 
formation) for bipartite lattices: 

c+ 1.1 = e'Q'Rjbil c+ I T  =bTT (2) 
with the reciprocal vector Q satisfying the condition exp(iQ - R )  = -1 for any R which 
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transforms one sublattice into another, which maps the Hubbard model with on-site 
attraction and arbitrary electron density (0 S n S 2) onto the half-filled Hubbard model 
with on-site Coulomb repulsion in the presence of an appropriate magnetic field [ 11, [3]. 
The transformation requires that the magnetisation of the repulsive model has the fixed 
value along the z direction and being equal to h(n - 1). Consequently, the magnetic 
long-range orderings (along the z axis and in the xy plane) in the model with U > 0 are 
equivalent to the electronic diagonal (CDW) and off-diagonal (singlet-superconductivity) 
orderings in the U < 0 case. 

In this paper we extend the Gutzwiller wave function [4] to study the attractive 
Hubbard model (1) (for previous variational studies of the model see [5], [6]). 

We introduce the following ansatz for the ground-state of the attractive model, 
(equation (1)) 

IV) = gD IVO) g E (1, w) (3a) 

where g is the variational parameter and IVo) stands for the ground-state of an appro- 
priate single particle effective Hamiltonian. In the simplest case Iqo) can be chosen to 
be the ground state of (1) for U = 0, i.e. Iqo) = I S L )  (where SL is the Slater determinant). 

The variational wave function (3a) is nothing but the generalisation for U < 0 of the 
Gutzwiller function for U > 0 [4] 

IV) = gD IVO) g E (0,1). (3b) 

We start by comparing the exact ground-state energy expansion derived in reference 
[7] for the ID case and n = 1, with the one obtained from the variational function (3a) 
for small and intermediate values of I UI. 

The use of alinkedcluster expansion technique ( 1  U /  S 222, where z is the coordination 
number) analogously to that for U > 0 and IV) given by (3b) (see references [€&lo]), 
yields for any lattice and IVo) given by the ground-state of To 

where fo and D are defined in (1). In (4) an average is taken with respect to the 
uncorrelated state Iqo) and (. . .)o,c, means that only connected diagrams are included. 

For the ID case we use Wick's theorem to express the expectation values of the RHS 
of (4) in terms of the equal-time free propagatois 

. .  
1 = J  

Following the same procedure as in reference [lo] for U > 0 a 
lattice summations we obtain for the ground state energy 

( 5 )  

d after performing the 

4t n2  U 2  
Jd 4 4t E o / N ,  = - -sin(nn/2) - IUI - - -[(n2/4)(1 - !3n)]2/{(n/2)(1 - n/2) 

+ [( ~in(nn/2) /n)]~} [ (sin(zn/2))/n]. 
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I , , , 1 , , ~ I variational linked cluster energy expansion 
(present expansion for U < 0 and the Gutzwiller 

-4 -3 -2 -’ ’ expansionofreference[lO]for U >  0). Fullcurve 
represents Woynarovich’s exact expansion. 

-3 

n= 1 

This energy is plotted for n = 1 ( U  0) in figure 1, together with the corresponding 
Gutzwiller cluster expansion of reference [ 101 for U > 0. The obtained energy curve is 
compared with the exact Bethe ansatz curve of reference [7] .  

For U = - 4t the energy (6) (n  = 1) takes account of 98% of the exact result. Like 
the exact curve, the variational one obtained from the combined use of the linked cluster 
expansions of functions (3a) ( U  < 0) and (36) (U > 0), is continuous at U = 0. 

In the case of a square lattice the equal-time free propagator Plj = ( C ~ C ~ , ) ~  is given 
by 

i = j  

(7) 
c 

where 

QF(k) = C0S- l  (-COS k - & ~ / 2 t )  

defines the Fermi surface for U = 0 through the equation k, = QF(ky). Inverting the 
function n = 2Pii 

we get that for 0 s n s 1 cF changes continuously from ~ ~ ( 0 )  = - 4t to ~ ~ ( 1 )  = 0. 
Following the same steps as in reference [ll] for U > 0, (4) now leads to 

n2 U 2  n2 2 
E o / N ,  = - 8tPh - / U /  7 - 4t [T (1 - n)  + ( P E # ) 4 ]  /{[n(l - n/2) 

m,”= - m  

+ 2(PA)2] PA}. (10) 
In figure 2 the energy (10) is plotted for n = 1 together with the corresponding Gutzwiller 
cluster expansion of reference [l l] .  The obtained curve is compared with Monte Carlo 
results [12]. 

The energy value in (10) can be improved if the starting ground-state of the RHS of 
(3a), Iqo), which in the present calculation was taken to be I s L ) ,  is replaced by the 
ground-state of an effective Hamiltonian including the appropriate broken symmetries. 
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Figure 2. Ground-state energy as a function of U/ 
t for a square lattice. Full curve represents the 
variational linked cluster expansions. The crosses 

-6 -5  - 4  -3 -2 -1 0 1 2 3 4 5 6 are QMC results by Hirsch [12]. The full circles 
were obtained by the U+ -Usymmetry. 

-3y, , , I ,  , , , , I  
- 4  

n.1 

In fact, contrary to the ID case, for a square lattice the ground-state is characterised by 
charge and superconducting long range orders for U < 0 (spin long range order for 
U >  0). 

So far we have only checked the variational function (3a) for small and intermediate 
values of I UI. 

Based on the method of reference [13], it is possible to derive the following ID result 
for the number of doubly occupied sites, which is exact within the variational function 
(3a)  

( D )  = Na{n(eq - 1) - ln[l + n(e7 - 1)]}/8 sinh2(q/2) (11a) 
or 

(N/4)n + q(N/4)n(l - fn) + O(q2)  

(N/2) - (Na/2) e-q[q + ln(n) - n] + O((e-q)’) 
q < l  

q % - 1  
(1lb) ( D )  = 

where q = 2 ln(g). Equations ( l l a ,  6) show that the function (3a) leads to the exact 
values of D for both U = 0 and U -  - m. These limiting values for D can be generalised 
to any bipartite lattice. We remember that the Gutzwiller wave function also fulfils this 
condition for U 4  m, i.e. D = 0 [13]. 

An important condition for a good variational wave function is that it reproduces the 
symmetry properties of the exact ground-state. In the present case, we require that the 
results obtained with the variational wave functions (3a) and (3b) transform into each 
other under the canonical transformation (2). 

Our preliminary studies with the wave functions (3a) and (3b) indicate that this 
symmetry is fulfilled for all parameter space and any bipartite lattice. In the present 
paper we check its validity for the ID lattice to second order in U/t  for small and 
intermediate 1 UI, and to second order in the concentration 6 = 1 - n (0 <n 6 1). The 
results for n > 1 can be obtained by replacing electrons by holes. 

Under the canonical transformation (2), the ID negative-U Hubbard model (1) is 
transformed into the repulsive one for the half-filling in an appropriate magnetic field 
and fixed magnetisation along the z axis equal to &(n - l), [l], [3] 
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where D and 8f are expressed in terms of the operators 6; and biu. For the ground- 
state of this Hamiltonian we use the Gutzwiller ansatz ( 3 b ) ,  with 11)~) defined as 

I I )o>= n bL,& n 6 l . f  10) Q U  = FT[bi+] (13)  

KFu = KF + uns + O(s3) KF = n / 2 .  

(k (<KF;  lk l<KFt  

and 

(14)  
Our results are valid only to second order in the concentration 6 for U < 0 because we 
do not account for the third order term of the RHS of equation (14) (within the canonical 
transformation 6 = - 2s). 

Besides the Hamiltonian (12), we also consider the one-dimensional corresponding 
U < 0 version of the Hamiltonian (1) for 0 S n S 1 (0 S KF S n / 2 ) .  We represent its 
ground-state by the variational wave function (3a) with Iq0) = I s L ) .  If the required 
symmetry holds, the energy obtained with the Gutzwiller ansatz (36 )  for the Hamiltonian 
(12) ,  with s replaced by - 6 / 2 ,  should give the same result as that calculated directly 
with the use of (3a) for the U < 0 ID Hamiltonian. 

For n = 1, the use of Wick’s theorem to express the RHS of ( 4 )  in terms of the free 
propagators 

i = j  a + us 
P -  = (b+b.  ) = sin[(n/2)($ + m ) ( i  - j ) ]  (15) i # j  n(i - j )  1 l ] ,U  IU ] U  0 

leads to 

4t 
EO/N, = - - COS(ZS) + 1 Ui(a - s2) - I U ~ S  - $ I U1 

Jd 

- (U2 /4 t ) [1 /12  - s2(1 - $ ~ ) ] ’ / [ f  + l/n2 

- s2(  (sin n s ) / n ) * ]  ((cos n,s)/n). (16a) 

Replacing s by - 6 / 2  and expanding the correlation term to second order in 6, we finally 
obtain (n  = 1 - 6) 

4t n2  U 2  n2 
n 4 4t 36(4 + n’) E,/N, = - - sin(nn/2) - 1 U [  - - - 

The use of the variational U < 0 wave function (3a) in the attractive ID Hamiltonian 
leads to the energy (6). Replacing n in the correlation term of the RHS of (6)  by 1 - 6 
and expanding to second order in 6 recovers the result (166). The required symmetry is 
then fulfilled not only for the half-filled band case but for all electronic densities. 

The symmetries which relate the ground-states of the ID U < 0 and U > 0 models 
imply that for small U the corresponding U/ t  expansions of the spin-spin and charge- 
charge correlation functions of the two models transform into each other by a simple 
U+ -U transformation. The same is true for the small U expansions of the ground- 
state energy and other quantities [7 ] .  Moreover, the small Uexpansions of the spin-spin 
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and charge-charge correlation functions only differ in the sign of U for each of these 
models. It is then obvious that the interchange of roles which the charge and spin degrees 
of freedom have in the two models is closely related to the referred symmetry. 

Thus the variational wave functions (3a, b )  correctly describe that symmetry. 
To close this paper we present preliminary results regarding the superconducting 

fluctuations of the model (1). This study, which is in progress, uses the variational wave 
function (3a) .  

Introducing 

(17) 0 .  = c. c. 
I I t  1 1  

we analyse the on-site Cooper pair-Cooper pair correlation function 

s;, = a({O:, 0,)) (18a) 

and its Fourier transform p(q).  

expansion for the function (18a) 
Following the same steps as in references [ll] and [14], we obtain the linked cluster 

which holds for any lattice provided that / W O )  is the ground-state of To. This is a good 
choice for the ID model because the corresponding ground state has no long range 
orders. 

For the one-dimensional case the use of Wick's theorem yields 

where 

I UI n2(1 - tn) 

As expected with increasing I U /  the fluctuations for on-site pairing are enhanced, for 
all electronic densities. 

To study superconducting and CDW instabilities for the square lattice one needs to 
introduce the broken symmetries in the starting ground-state IWo) of the RHS of (3a).  
Such an extension is in progress. 

To have an indication about the instability of the paramagnetic state ISL) towards the 
superconducting long range order, we have calculated the function (18b) for a square 
lattice. Its Fourier transform p(q) is largest at q = 0. In figure 3 g(q) is plotted as a 
function of 1q/ in the direction defined by the points (0,O) and (JG, 0) for various values 
of U and n = 0.875. In figure 4 p(0) is plotted as a function of n for various values of U. 
The fluctuations for on-site Cooper pairing of the paramagnetic state I S L )  increase with 
increasing I U1 for all values of the electronic density. The same result is obtained for the 
charge fluctuations. On the contrary, the spin fluctuations are reduced with increasing 
I U / .  These results are fully consistent with the ones obtained in references [ll] and [14] 
by means of the Gutzwiller function (3b)  for U > 0. 
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Figure 3. Correlation function ss(q) for a square 
lattice for n = 0.875 and for various values of U as 
a function of IqI = qx in the direction defined by 
the points [0, 01 and [z, 01. 

Figure 4. Function p(0) for a square lattice as a 
function of n for various values of U. 
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